Heteroclinic Connections in the Kuramoto-Sivashinsky Equation: a Computer Assisted Proof

نویسندگان

  • Marian Mrozek
  • Marcin Zelawski
چکیده

On the example of a nite dimensional approximation of the Kuramoto-Sivashinsky equation we show how topological methods may be successfully used in computer assisted proofs of the existence of heteroclinic connections in ordinary diierential equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Attracting Fixed Points for the Kuramoto-Sivashinsky Equation: A Computer Assisted Proof

We present a computer assisted proof of the existence of several attracting fixed points for the Kuramoto–Sivashinsky equation ut = (u )x − uxx − νuxxxx, u(x, t) = u(x+ 2π, t), u(x, t) = −u(−x, t), where ν > 0. The method is general and can be applied to other dissipative PDEs.

متن کامل

Rigorous Numerics for Dissipative Partial Differential Equations II. Periodic Orbit for the Kuramoto-Sivashinsky PDE-A Computer-Assisted Proof

We present a method of self-consistent a-priori bounds, which allows to study rigorously dynamics of dissipative PDEs. As an application present a computer assisted proof of an existence of a periodic orbit for the Kuramoto-Sivashinsky equation ut = (u )x− uxx− νuxxxx, u(t, x) = u(t, x + 2π), u(t, x) = −u(t,−x),

متن کامل

Steady State Bifurcations for the Kuramoto-sivashinsky Equation - a Computer Assisted Proof

We apply the method of self-consistent bounds to prove the existence of multiple steady state bifurcations for Kuramoto-Sivashinski PDE on the line with odd and periodic boundary conditions.

متن کامل

Exact Solutions of the Generalized Kuramoto-Sivashinsky Equation

In this paper we obtain  exact solutions of the generalized Kuramoto-Sivashinsky equation, which describes manyphysical processes in motion of turbulence and other unstable process systems.    The methods used  to determine the exact solutions of the underlying equation are the Lie group analysis  and the simplest equation method. The solutions obtained are  then plotted.

متن کامل

Viscous Shocks in the Destabilized Kuramoto-Sivashinsky Equation

We study stationary periodic solutions of the Kuramoto-Sivashinsky (KS) model for complex spatiotemporal dynamics in the presence of an additional linear destabilizing term. In particular, we show the phase space origins of the previously observed stationary “viscous shocks” and related solutions. These arise in a reversible four-dimensional dynamical system as perturbed heteroclinic connection...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Reliable Computing

دوره 3  شماره 

صفحات  -

تاریخ انتشار 1997